当前位置:首页 > TAG信息列表 > 直线

直线

直线

[拼音]:zhixian

[外文]:straightline

构成几何图形的最基本的元素。在d.希尔伯特建立的欧几里得几何的公理体系中(见欧几里得几何学),把点、直线和平面与“点在直线上”、“点在平面内”、“一点在另两点之间”、“线段合同”、“角合同”一起作为基本概念,由“结合公理”、“顺序公理”、“合同公理”、“连续公理”、“平行公理”等五组公理制约。换句话说,它们的概念体现在这五组公理之中。

在建立了直角坐标系oxy的坐标平面内,直线的方程是x、y的一次方程。

直线

如果把直线方程写成ax+by+c=0(a、b不全为0)的形式,这种形式的直线方程,通常叫做直线方程的一般式。

通过定点m0(x0,y0)、斜率为k的直线的方程为y-y0=k(x-x0)。这种形式的直线方程,叫做直线方程的点斜式。当斜率为k的直线在y轴上的截距为b)时,直线的方程为y=kx+b)。这种形式的直线方程,叫做直线方程的斜截式。

通过两定点m1(x1,y1)和m2(x2,y2)的直线的方程为。这种形式的直线方程,叫做直线方程的两点式。当直线在x轴、y轴上的截距分别为α、b)时,直线的方程为。这种形式的直线方程,叫做直线方程的截距式。

方程为ax+by+c=0(a、b不全为0)的直线的斜率为;在x轴、y轴上的截距分别为和。

由坐标原点o至直线l的距离如果为p(≥0),直线l的法线l┡与x轴的正半轴的交角如果为θ(0≤θ<2π)(图1

),直线l的方程为xcosθ+ysinθ-p=0。这种形式的直线方程,通常叫做直线方程的法线式。

在同一直角坐标系oxy中,如果一直线的方程的一般式为ax+by+c=0,方程的法线式为xcosθ+ysinθ-p=0,那么

一直线xcosθ+ysinθ-p=0至一定点m0(x0,y0)的距离为d=x0cosθ+y0sinθ-p。如果此直线方程为ax+by+c=0,那么,至点m0(x0,y0)的距离为

式中根式的符号与c的符号相反。

如果直线l1和l2的斜率分别为k1和k2(图2

),l1和l2所指定的交角的正切为

直线l1和l2平行的充要条件是k1=k2;垂直的充要条件是k1k2=-1或。

如果直线l1和l2的方程分别为a1x+b1y+c1=0和a2x+b2y+c2=0,那么,l1和l2的交点坐标为

如果,那么,l1∥l2。如果,那么l1和l2重合。

如果以直角坐标系oxy的原点o为极,ox为极轴建立极坐标系,那么,在直角坐标系oxy中,一直线的方程如果是xcosθ+ysinθ-p=0,它在该极坐标系的方程即直线上点的极坐标(ρ,α)所满足的方程为

在直角坐标系oxy中建立了坐标向量后,取一点m0,其向径为r0{x1,y1},取任意非零向量n{a,b},引垂直n并通过点m0的直线l。设m(x,y)是直线l上任意点(图3

),其向径为r{x,y},那么或,就是直线l的向量方程。

设i、j分别为ox、oy轴的正方向上的单位向量,那么,。因而,即;即;即。

设c=-(ax0+by0),上述方程即ax+by+c=0。因此,直线l的向量方程便化为直线方程的一般式。

参考文章生猪直线育肥把七关猪提高农户养猪效益主要措施(二)采用直线育肥方法猪养猪直线育肥的饲养管理技术猪《人生可以走直线》读后感3篇900、1000、1400字读后感作文生猪直线育肥疾病预防猪高档肉牛直线育肥技术牛如何确定直线上接触线“之”字布置时产生的水平力pz?交通运输已知两支柱均位于r=800m,h=120mm的圆曲线外侧,两支柱定位点直线距离为l=50m,定位拉出值均为350mm,导高为6000mm,轨距为1435mm,计算跨中拉出值。交通运输简述直线职能制结构管理学为什么需规定支柱的侧面限界?为什么曲线区段支柱面限界比直线区段大?交通运输
慧博优选 同人工艺网

  • 关注微信关注微信

猜你喜欢

微信公众号