当前位置:首页 > TAG信息列表 > 标准差和方差反映数据的什么特征

标准差和方差反映数据的什么特征

均方差和标准差的区别

均方差即标准差,是离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。

标准差的性质和应用

标准差,在概率统计中最常使用作为统计分布程度上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:

为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。

简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。

均方差和标准差的区别

例如,两组数的集合{0,5,9,14}和{5,6,8,9}其平均值都是7,但第二个集合具有较小的标准差。

标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。

标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。

例如,a、b两组各有6位学生参加同一次语文测验,a组的分数为95、85、75、65、55、45,b组的分数为73、72、71、69、68、67。这两组的平均数都是70,但a组的标准差约为17.08分,b组的标准差约为2.16分,说明a组学生之间的差距要比b组学生之间的差距大得多。

如是总体(即估算总体方差),根号内除以n(对应excel函数:stdevp);

如是抽样(即估算样本方差),根号内除以(n-1)(对应excel函数:stdev);

因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。


外卖达人网 双子星云

  • 关注微信关注微信

猜你喜欢

微信公众号