一般地,把形如y=ax²+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数,下面总结了二次函数的图像和性质,供大家参考。
二次函数的定义和概念一般地,把形如y=ax²+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。
注意:“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别。
图像和性质1.函数y=ax2(a不等于0)的图像和性质
用表里各组对应值作为点的坐标,进行描点,然后用光滑的曲线把它们顺次联结起来,就得到函数y=x2的图象这个图象叫做抛物线函数y=x2的图像,以后简称为抛物线y=x2这条抛物线是关于y轴成对称的我们把y轴叫做抛物线y=x2的对称轴对称轴和抛物线的焦点,叫做抛物线的顶点。
2.函数y=ax2+bx+c(a不等于0)的图像和性质
抛物线y=ax2+bx+c的顶点坐标是(-b/2a,4ac-b2/4a),对称轴方程是x=-b/2a,当a〉0时,抛物线的开口向上,并且向上无限延伸;当a〈0时,抛物线的开口向下,并且向下无限延伸
当a〉0时,二次函数y=ax2+bx+c在x〈-b/2a时是递减的,在x〉-b/2a时是递增的;在x=-b/2a处取得y最小=4ac-b2/4a;当a〈0时,二次函数y=ax2+bx+c在x〈-b/2a时是递减的。
原文标题:二次函数的图像和性质,如若转载,请注明出处:https://www.saibowen.com/tougao/10331.html
免责声明:此资讯系转载自合作媒体或互联网其它网站,「赛伯温」登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,文章内容仅供参考。