八年级数学教案(精选10篇)
作为一名为他人授业解惑的教育工作者,总不可避免地需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么应当如何写教案呢?以下是小编为大家整理的八年级数学教案(精选10篇),希望能够帮助到大家!
八年级数学教案篇1一、回顾交流,合作学习
【活动方略】
活动设计:教师先将学生分成四人小组,交流各自的小结,并结合课本p87的小结进行反思,教师巡视,并且不断引导学生进入复习轨道.然后进行小组汇报,汇报时可借助投影仪,要求学生上台汇报,最后教师归纳.
【问题探究1】(投影显示)
飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,问:飞机飞行了多少千米?
思路点拨:根据题意,可以先画出符合题意的图形,如右图,图中△abc中的∠c=90°,ac=4000米,ab=5000米,要求出飞机这时飞行多少千米,就要知道飞机在20秒时间里飞行的路程,也就是图中的bc长,在这个问题中,斜边和一直角边是已知的,这样,我们可以根据勾股定理来计算出bc的长.(3000千米)
【活动方略】
教师活动:操作投影仪,引导学生解决问题,请两位学生上台演示,然后讲评.
学生活动:独立完成“问题探究1”,然后踊跃举手,上台演示或与同伴交流.
【问题探究2】(投影显示)
一个零件的形状如右图,按规定这个零件中∠a与∠bdc都应为直角,工人师傅量得零件各边尺寸:ad=4,ab=3,db=5,dc=12,bc=13,请你判断这个零件符合要求吗?为什么?
思路点拨:要检验这个零件是否符合要求,只要判断△adb和△dba是否为直角三角形,这样可以通过勾股定理的逆定理予以解决:
ab2+ad2=32+42=9+16=25=bd2,得∠a=90°,同理可得∠cdb=90°,因此,这个零件符合要求.
【活动方略】
教师活动:操作投影仪,关注学生的思维,请两位学生上讲台演示之后再评讲.
学生活动:思考后,完成“问题探究2”,小结方法.
解:在△abc中,ab2+ad2=32+42=9+16=25=bd2,
∴△abd为直角三角形,∠a=90°.
在△bdc中,bd2+dc2=52+122=25+144=169=132=bc2.
∴△bdc是直角三角形,∠cdb=90°
因此这个零件符合要求.
【问题探究3】
甲、乙两位探险者在沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距多远?
思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)
【活动方略】
教师活动:操作投影仪,巡视、关注学生训练,并请两位学生上讲台“板演”.
学生活动:课堂练习,与同伴交流或举手争取上台演示
八年级数学教案篇2教学目标:
1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。
2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。
3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。
4、能利和计算器求一组数据的算术平均数。
教学重点:体会平均数、中位数、众数在具体情境中的意义和应用。
教学难点:对于平均数、中位数、众数在不同情境中的应用。
教学方法:归纳教学法。
教学过程:
一、知识回顾与思考
1、平均数、中位数、众数的概念及举例。
一般地对于n个数x1,……xn把(x1+x2+…xn)叫做这n个数的算术平均数,简称平均数。
如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。
中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。
众数就是一组数据中出现次数最多的那个数据。
如3,2,3,5,3,4中3是众数。
2、平均数、中位数和众数的特征:
(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。
(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。
(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。
(4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。
3、算术平均数和加权平均数有什么区别和联系:
算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。
4、利用计算器求一组数据的平均数。
利用科学计算器求平均数的方法计算平均数。
二、例题讲解:
例1,某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:
每人销售件数1800510250210150120
人数113532
(1)求这15位营销人员该月销售量的平均数、中位数和众数;
(2)假设销售部负责人把每位营销员的月销售额定为平均数,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由。
例2,某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?
三、课堂练习:复习题a组
四、小结:
1、掌握平均数、中位数与众数的概念及计算。
2、理解算术平均数与加权平均数的联系与区别。
五、作业:复习题b组、c组(选做)
八年级数学教案篇3课时目标
1.掌握分式、有理式的概念。
2.掌握分式是否有意义、分式的值是否等于零的识别方法。
教学重点
正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。
教学难点:
正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。
教学时间:一课时。
教学用具:投影仪等。
教学过程:
一.复习提问
1.什么是整式?什么是单项式?什么是多项式?
2.判断下列各式中,哪些是整式?哪些不是整式?
①+m2②1+x+y2-③④
⑤⑥⑦
二.新课讲解:
设问:不是整工式子中,和整式有什么区别?
小结:1.分式的概念:一般地,形如的式子叫做分式,其中a和b均为整式,b中含有字母。
练习:下列各式中,哪些是分式哪些不是?
(1)、、(2)、(3)、(4)、(5)x2、(6)+4
强调:(6)+4带有是无理式,不是整式,故不是分式。
2.小结:对整式、分式的正确区别:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别。
练习:课后练习p6练习1、2题
设问:(让学生看课本上p5“思考”部分,然后回答问题。)
例题讲解:课本p5例题1
分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要这引起分母不为零,分式便有意义。
(板书解题过程。)
3.小结:分式是否有意义的识别方法:当分式的分母为零时,分式无意义;当分式的分母不等于零时,分式有意义。
增加例题:当x取什么值时,分式有意义?
解:由分母x2-4=0,得x=±2。
∴当x≠±2时,分式有意义。
设问:什么时候分式的值为零呢?
例:
解:当①分式的值为零
八年级数学教案篇4一、教学目标
1.灵活应用勾股定理及逆定理解决实际问题.
2.进一步加深性质定理与判定定理之间关系的认识.
二、重点、难点
1.重点:灵活应用勾股定理及逆定理解决实际问题.
2.难点:灵活应用勾股定理及逆定理解决实际问题.
3.难点的突破方法:
三、课堂引入
创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.
四、例习题分析
例1(p83例2)
分析:⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得pr=12×1。5=18,pq=16×1。5=24,qr=30;
⑷因为242+182=302,pq2+pr2=qr2,根据勾股定理的逆定理,知∠qpr=90°;
⑸∠prs=∠qpr—∠qps=45°.
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识.
例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.
分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长5、12、13;
⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形.
解略.
本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.
八年级数学教案篇5一、教学目标:
1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;
2、能力目标:
①,在实践操作过程中,逐步探索图形之间的平移关系;
②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;
3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。
二、重点与难点:
重点:图形连续变化的特点;
难点:图形的划分。
三、教学方法:
讲练结合。使用多媒体课件辅助教学。
四、教具准备:
多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。
五、教学设计:
创设情景,探究新知:
(演示课件):教材上小狗的图案。提问:
(1)这个图案有什么特点?
(2)它可以通过什么“基本图案”,经过怎样的平移而形成?
(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?
小组讨论,派代表回答。(答案可以多种)
让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。
看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?
小组讨论,派代表到台上给大家讲解。
气氛要热烈,充分调动学生的积极性,发掘他们的想象力。
畅所欲言,互相补充。
课堂小结:
在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。
课堂练习:
小组讨论。
小组讨论完成。
例子一定要和大家接触紧密、典型。
答案不惟一,对于每种答案,教师都要给予充分的肯定。
六、教学反思:
本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。
八年级数学教案篇6教学建议
1、平行线等分线段定理
定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等。
注意事项:定理中的.平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成。
定理的作用:可以用来证明同一直线上的线段相等;可以等分线段。
2、平行线等分线段定理的推论
推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。
推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。
记忆方法:“中点”+“平行”得“中点”。
推论的用途:(1)平分已知线段;(2)证明线段的倍分。
重难点分析
本节的重点是平行线等分线段定理。因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础。
本节的难点也是平行线等分线段定理。由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意。
教法建议
平行线等分线段定理的引入
生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:
①从生活实例引入,如刻度尺、作业本、栅栏、等等;
②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论。
教学设计示例
一、教学目标
1、使学生掌握平行线等分线段定理及推论。
2、能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力。
3、通过定理的变式图形,进一步提高学生分析问题和解决问题的能力。
4、通过本节学习,体会图形语言和符号语言的和谐美
二、教法设计
学生观察发现、讨论研究,教师引导分析
三、重点、难点
1、教学重点:平行线等分线段定理
2、教学难点:平行线等分线段定理
四、课时安排
l课时
五、教具学具
计算机、投影仪、胶片、常用画图工具
六、师生互动活动设计
教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习
七、教学步骤
【复习提问】
1、什么叫平行线?平行线有什么性质。
2、什么叫平行四边形?平行四边形有什么性质?
【引入新课】
由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线,测量它被相邻横线截得的线段是否也相等?
(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)
平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等。
注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确。
下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证)。
已知:如图,直线,。
求证:。
分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得),通过全等三角形性质,即可得到要证的结论。
(引导学生找出另一种证法)
分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得。
证明:过点作分别交、于点、,得和,如图。
∴
∵,
∴
又∵,,
∴
∴
为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示)。
引导学生观察下图,在梯形中,,,则可得到,由此得出推论1。
推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。
再引导学生观察下图,在中,,,则可得到,由此得出推论2。
推论2:经过三角形一边的中点与另一边平行的直线必平分第三边。
注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好。
接下来讲如何利用平行线等分线段定理来任意等分一条线段。
例已知:如图,线段。
求作:线段的五等分点。
作法:①作射线。
②在射线上以任意长顺次截取。
③连结。
④过点。、、分别作的平行线、、、,分别交于点、、、。
、、、就是所求的五等分点。
(说明略,由学生口述即可)
【总结、扩展】
小结:
(l)平行线等分线段定理及推论。
(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明。
(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组。
(4)应用定理任意等分一条线段。
八、布置作业
教材p188中a组2、9
九、板书设计
十、随堂练习
教材p182中1、2
八年级数学教案篇7知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数
能力目标:会用变化的量描述事物
情感目标:回用运动的观点观察事物,分析事物
重点:函数的概念
难点:函数的概念
教学媒体:多媒体电脑,计算器
教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围
教学设计:
引入:
信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗?
新课:
问题:(1)如图是某日的气温变化图。
①这张图告诉我们哪些信息?
②这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变化规律的?
(2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(khz)为单位标刻的,下表中是一些对应的数:
①这表告诉我们哪些信息?
②这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗?
一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
范例:例1判断下列变量之间是不是函数关系:
(5)长方形的宽一定时,其长与面积;
(6)等腰三角形的底边长与面积;
(7)某人的年龄与身高;
活动1:阅读教材7页观察1.后完成教材8页探究,利用计算器发现变量和函数的关系
思考:自变量是否可以任意取值
例2一辆汽车的油箱中现有汽油50l,如果不再加油,那么油箱中的油量y(单位:l)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1l/km。
(1)写出表示y与x的函数关系式.
(2)指出自变量x的取值范围.
(3)汽车行驶200km时,油箱中还有多少汽油?
解:(1)y=50-0.1x
(2)0500
(3)x=200,y=30
活动2:练习教材9页练习
小结:(1)函数概念
(2)自变量,函数值
(3)自变量的取值范围确定
作业:18页:2,3,4题
八年级数学教案篇8总课时:7课时使用人:
备课时间:第八周上课时间:第十周
第4课时:5、2平面直角坐标系(2)
教学目标
知识与技能
1.在给定的直角坐标系下,会根据坐标描出点的位置;
2.通过找点、连线、观察,确定图形的大致形状的问题,能进一步掌握平面直角坐标系的基本内容。
过程与方法
1.经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作交流能力;
2.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识。
情感态度与价值观
通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣。
教学重点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。
教学难点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。
教学过程
第一环节感受生活中的情境,导入新课(10分钟,学生自己绘图找点)
在上节课中我们学习了平面直角坐标系的定义,以及横轴、纵轴、点的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的点的连线与坐标轴的关系,坐标轴上点的坐标有什么特点。
练习:指出下列各点以及所在象限或坐标轴:
a(-1,-2.5),b(3,-4),c(,5),d(3,6),e(-2.3,0),f(0,),g(0,0)(抽取学生作答)
由点找坐标是已知点在直角坐标系中的位置,根据这点在方格纸上对应的x轴、y轴上的数字写出它的坐标,反过来,已知坐标,让你在直角坐标系中找点,你能找到吗?这就是本节课的内容。
第二环节分类讨论,探索新知.(15分钟,小组讨论,全班交流)
1.请同学们拿出准备好的方格纸,自己建立平面直角坐标系,然后按照我给出的坐标,在直角坐标系中描点,并依次用线段连接起来。
(-9,3),(-9,0),(-3,0),(-3,3)
(学生操作完毕后)
2.(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
观察所得的图形,你觉得它像什么?
分成4人小组,大家合作在刚才建立的平面直角坐标系中(选出小组中最好的)添画。各人分工,每人画一小题。看哪个小组做得最快?
(出示学生的作品)画出是这样的吗?这幅图画很美,你们觉得它像什么?
这个图形像一栋房子旁边还有一棵大树。
3.做一做
(出示投影)
在书上已建立的直角坐标系画,要求每位同学独立完成。
(学生描点、画图)
(拿出一位做对的学生的作品投影)
你们观察所得的图形和它是否一样?若一样,你能判断出它像什么呢?
(像猫脸)
第三环节学有所用.(10分钟,先独立完成,后小组讨论)
(补充)1.在直角坐标系中描出下列各点,并将各组内的点用线段顺次连接起来。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
观察所得的图形,你觉得它像什么?(像移动的菱形)
2.在直角坐标系中,设法找到若干个点使得连接各点所得的封闭图形是如下图所示的十字。
先独立完成,然后小组讨论是否正确。
第四环节感悟与收获(5分钟,学生总结,全班交流)
本节课在复习上节课的基础上,通过找点、连线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容。
在例题和练习中,我们画出了不少美丽的图形,自己设计一些图形,并把图形放在直角坐标系下,写出点的坐标。
第五环节布置作业
习题5、4
a组(优等生)1、2、3
b组(中等生)1、2
c组(后三分之一生)1、2
八年级数学教案篇9一、学习目标及重、难点:
1、了解方差的定义和计算公式。
2、理解方差概念的产生和形成的过程。
3、会用方差计算公式来比较两组数据的波动大小。
重点:方差产生的必要性和应用方差公式解决实际问题。
难点:理解方差公式
二、自主学习:
(一)知识我先懂:
方差:设有n个数据,各数据与它们的平均数的差的平方分别是
我们用它们的平均数,表示这组数据的方差:即用
来表示。
给力小贴士:方差越小说明这组数据越。波动性越。
(二)自主检测小练习:
1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为。
2、甲、乙两组数据如下:
甲组:1091181213107;
乙组:7891011121112.
分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.
三、新课讲解:
引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)
甲:9、10、10、13、7、13、10、8、11、8;
乙:8、13、12、11、10、12、7、7、10、10;
问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数:=)
(2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了)
归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别是
我们用它们的平均数,表示这组数据的方差:即用来表示。
(一)例题讲解:
例1、段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?、
测试次数第1次第2次第3次第4次第5次
段巍1314131213
金志强1013161412
给力提示:先求平均数,在利用公式求解方差。
(二)小试身手
1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7
经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定
去参加比赛。
1、求下列数据的众数:
(1)3,2,5,3,1,2,3(2)5,2,1,5,3,5,2,2
2、8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16岁的6人。8年级一班学生年龄的平均数,中位数,众数分别是多少?
四、课堂小结
方差公式:
给力提示:方差越小说明这组数据越。波动性越。
每课一首诗:求方差,有公式;先平均,再求差;
求平方,再平均;所得数,是方差。
五、课堂检测:
1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)
小爽10.810.911.010.711.111.110.811.010.710.9
小兵10.910.910.810.811.010.910.811.110.910.8
如果根据这几次成绩选拔一人参加比赛,你会选谁呢?
六、课后作业:必做题:教材141页练习1、2选做题:练习册对应部分习题
七、学习小札记:
写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!
八年级数学教案篇10菱形
学习目标(学习重点):
1.经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;
2.运用菱形的识别方法进行有关推理.
补充例题:
例1.如图,在△abc中,ad是△abc的角平分线。de∥ac交ab于e,df∥ab交ac于f.四边形aedf是菱形吗?说明你的理由.
例2.如图,平行四边形abcd的对角线ac的垂直平分线与边ad、bc分别交于e、f.
四边形afce是菱形吗?说明理由.
例3.如图,abcd是矩形纸片,翻折b、d,使bc、ad恰好落在ac上,设f、h分别是b、d落在ac上的两点,e、g分别是折痕ce、ag与ab、cd的交点
(1)试说明四边形aecg是平行四边形;
(2)若ab=4cm,bc=3cm,求线段ef的长;
(3)当矩形两边ab、bc具备怎样的关系时,四边形aecg是菱形.
课后续助:
一、填空题
1.如果四边形abcd是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形
2.如图,d、e、f分别是△abc的边bc、ca、ab上的点,
且de∥ba,df∥ca
(1)要使四边形afde是菱形,则要增加条件______________________
(2)要使四边形afde是矩形,则要增加条件______________________
二、解答题
1.如图,在□abcd中,若2,判断□abcd是矩形还是菱形?并说明理由。
2.如图,平行四边形abcd的两条对角线ac,bd相交于点o,oa=4,ob=3,ab=5.
(1)ac,bd互相垂直吗?为什么?
(2)四边形abcd是菱形吗?
3.如图,在□abcd中,已知adab,abc的平分线交ad于e,ef∥ab交bc于f,试问:四边形abfe是菱形吗?请说明理由。
4.如图,把一张矩形的纸abcd沿对角线bd折叠,使点c落在点e处,be与ad交于点f.
⑴求证:abf≌
⑵若将折叠的图形恢复原状,点f与bc边上的点m正好重合,连接dm,试判断四边形bmdf的形状,并说明理由.
原文标题:八年级数学教案,如若转载,请注明出处:https://www.saibowen.com/tougao/2548.html
免责声明:此资讯系转载自合作媒体或互联网其它网站,「赛伯温」登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,文章内容仅供参考。