四边形内角和是360°。四边形内角和=(4-2)×180°=360°;任意的四边形最多可分为2个三角形,因为三角形内角和是180°,所以四边形的内角和等于180°×2=360°。
四边形的内角和计算n边型的内角和为(n-2)×180°
所以四边形内角和为(4-2)×180°=2×180°=360°
扩展:
每增加一条边,即增加一个三角形,内角增加180度。
多边形内角和定理定理:正多边形内角和定理n边形的内角的和等于:(n-2)×180°(n大于等于3且n为整数)
已知
已知正多边形内角度数则其边数为:360°÷(180°-内角度数)
推论
任意正多边形的外角和=360°
正多边形任意两条相邻边连线所构成的三角形是等腰三角形
多边形的内角和定义
〔n-2〕×180°(n为边数)
多边形内角和定理证明
证法一:在n边形内任取一点o,连结o与各个顶点,把n边形分成n个三角形.
因为这n个三角形的内角的和等于n·180°,以o为公共顶点的n个角的和是360°
所以n边形的内角和是n·180°-2×180°=(n-2)·180°.(n为边数)
即n边形的内角和等于(n-2)×180°.(n为边数)
证法二:连结多边形的任一顶点a1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三角形.
因为这(n-2)个三角形的内角和都等于(n-2)·180°(n为边数)
所以n边形的内角和是(n-2)×180°.
证法三:在n边形的任意一边上任取一点p,连结p点与其不相邻的其它各顶点的线段可以把n边形分成(n-1)个三角形,
这(n-1)个三角形的内角和等于(n-1)·180°(n为边数)
以p为公共顶点的(n-1)个角的和是180°
所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°.(n为边数)
重点:多边形内角和定理及推论的应用。
难点:多边形内角和定理的推导及运用方程的思想来解决多边形内、外角的计算。
原文标题:四边形内角和是多少度,如若转载,请注明出处:https://www.saibowen.com/tougao/3058.html
免责声明:此资讯系转载自合作媒体或互联网其它网站,「赛伯温」登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,文章内容仅供参考。