首页 > 常见问答

电子商务B2C网站很全面的数据分析方法

年底前做的最后一项工作是,根据我们的业务特点,建立了整体b2c运营体系的数据模型,技术部已经开始对接商城后台,实施我们web版的数据分析后台,明年我们的运营部,将逐步实现运营数据化,以数据为指导思想,来发现问题,解决问题,逐步使我们的运营工作稳健的上一个又一个台阶。

第一项:日常性数据(基础)

流量相关数据:ip、pv、在线时间、跳出率、新用户比例;

订单相关数据:总订单、有效订单、订单有效率、总销售额、客单价、毛利润、毛利率;

电子商务B2C网站很全面的数据分析方法

转化率相关:下单转化率、付款转化率。

简要说明:因为我们已经实现基础的web版数据分析系统(有些公司用进销存软件),所以常规性的销售额、利润、利润率,都是可以通过系统实现的。因为直接与商城后台对接,库存管理都已经做进去了,分析数据时候,后台的原始数据都有,设定好各项公式,想要的结果都出来了,这样实现比用软件效率更好,且可以根据各自的需求灵活开发。

由于会出现用户今日下单,明日付款,所以订单有效率、销售额、转化率、客单价会动态变化,靠excel基本是做不来,所以灵活对接系统非常重要,如果没有,也可以参考这方面的需求去开发。

第二项:每周数据分析(核心)

用户下单和付款不一定会在同一天完成,但一周的数据相对是精准的,所以我们把每周数据作为比对的参考对象,主要的用途在于,比对上周与上上周数据间的差别,运营做了某方面的工作,产品做出了某种调整,相对应的数据也会有一定的变化,如果没有提高,说明方法有问题或者本身的问题并在与此。

网站使用率:ip、pv、平均浏览页数、在线时间、跳出率、回访者比率、访问深度比率、访问时间比率;

这是最基本的,每项数据提高都不容易,这意味着要不断改进每一个发现问题的细节,不断去完善购物体验。来说明下重要的数据指标:

跳出率:跳出率高绝不是好事,但跳出的问题在哪里才是关键。我的经验,在一些推广活动或投放大媒体广告时,跳出率都会很高,跳出率高可能意味着人群不精准,或者广告诉求与访问内容有巨大的差别,或者本身的访问页面有问题。常规性的跳出率我注于登录、注册、订单流程1-3步、用户中心等基础页面,如果跳出率高于20%,我觉得就有不少的问题,也根据跳出率来改进购物流程和用户体验。

回访者比率=一周内2次回访者/总来访者,意味着网站吸引力,以及会员忠诚度,如果在流量稳定的情况下,此数据相对高一些会比较高,太高则说明新用户开发的太少,太低则说明用户的忠诚度太差,复购率也不会高。

访问深度比率=访问超过11页的用户/总的访问数,访问时间比率=访问时间在10分钟以上的用户数/总用户数,这两项指标代表网站内容吸引力,数据比率越高越好。

运营数据:总订单、有效订单、订单有效率、总销售额、客单价、毛利润、毛利率、下单转化率、付款转化率、退货率;

每日数据汇总,每周的数据一定是稳定的,主要比对于上上周的数据,重点指导运营内部的工作,如产品引导、定价策略、促销策略、包邮策略等。

比对数据,为什么订单数减少了?但销售额增加了?这是否是好事?

对比数据,为什么客单价提高了?但利润率降低了?这是否是好事?

对比数据,能否做到:销售额增长,利润率提高,订单数增加?这不是不可能。

所有的问题,在运营数据中都能够找到答案。

第三项:用户分析

会员分析:新会员注册、新会员购物比率、会员总数、所有会员购物比率;

概括性分析会员购物状态,重点在于本周新增了多少会员,新增会员购物比率是否高于总体水平。如果你的注册会员购物比率很高,那引导新会员注册不失为提高销售额的好方法。

会员复购率:1次购物比例、2次购物比例、3次购物比例、4次购物比例、5次购物比例、6次购物比例;

转化率是体现的是b2c的购物流程、用户体验是否有好,可以叫外功,复购率则体现b2c整体的竞争力,绝对是内功,这包括知名度、口碑、客户服务、包装、发货单等每个细节,好的b2c复购率能做到90%,没有复购率的b2c绝对没有任何前途,所以这也能够理解为什么很多b2c愿意花大钱去投门户广告,为了就是获取用户的第一次购买,从而获得长期的重复购买。但某些b2c购物体验做的不好,花大钱砸广告,这纯属烧钱行为。

所以我觉得运营的核心工作,一方面是做外功,提高转化率,获取消费者第一次购买行为,另外一方面就是做内功,提高复购率,b2c根本也就在重复购买。所以b2c是个综合学科,做好每门功课真是不容易,不过也就是依靠每个细节,才奠定了b2c发展的基石。

中国的b2c是幸运的,因为中国的消费者很宽容,你欺骗我一次,我可能还会原谅你,说实话给消费者选择的空间也并不是那么多,但随着新崛起b2c的成长,对服务的关注与投入,我相信未来的b2c会是个服务行业,而不是搬运工。

第四项:流量来源分析

我们用的是googleanalytics,统计的数据比较详细,流量来源分析我觉得最重要的意义是:

第一,监控各渠道转化率,这是运营的核心工作,针对不同的渠道做有效的营销,ip代表着力度,转化率代表着效果;

第二,发掘有效媒体,转化率的数据让我们很清晰的了解什么样的渠道转化效果好,那么以此类推,同样的营销方式,用在同类的渠道上,效果差不到哪去,bd或广告就可以去开发同类的合作渠道,复制成功经验。

流量分析是为运营和推广部门指导方向的,除了关注转化率,还有像浏览页数、在线时间,都是评估渠道价值的指标。

第五项:内容分析

主要的两项指标:退出率和热点内容

退出率是个好医生,很适合给b2c检查身体,哪里的退出率高,基本会说明有些问题,重点关注登录、注册、购物车、用户中心,这些是最基础的,但也是最关键的。一般我会列出top20退出率页面,然后运营部会重点讨论为什么,然后依次进行改进,不过我们今年做的很粗旷,做得也不是很好,来年重点完善。

热点内容这部分是用来指导运营工作的,消费者最关注什么,什么产品、分类、品牌点击最高,这些数据在新的运营工作中做重点引导,推荐消费者最关注的品牌、促销最关注的商品等等。

第六项:商品销售分析

这部分是内部数据,根据每周、每月的销售详情,了解经营状况,做出未来销售趋势的判断,这部分数据模型还在规划中,每家的情况都不同,所以这里就不做说明了。

本文写的比较仓促和潦草,年后有空会把每一部分延伸来写,希望能对大家有些帮助,对b2c的经营时间比较段,经验并不多,所以请高手不必见笑了。

最后祝大家春节快乐!!

原文标题:电子商务B2C网站很全面的数据分析方法,如若转载,请注明出处:https://www.saibowen.com/wenda/20315.html
免责声明:此资讯系转载自合作媒体或互联网其它网站,「赛伯温」登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,文章内容仅供参考。